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A general linear response theory is presented to calculate the zero-wave- 
vector and zero-frequency reaction rate coefficient for particles diffusing 
into absorbing spheres. Allowance is made for possible incomplete particle 
absorption. A Fax6n-like theorem for chemical reactions is derived. The 
problem is solved completely for a simple regular array of sinks. Exact 
analytic expressions for the rate coefficient as a function of sink volume 
fraction are obtained for the sc and fcc lattices. The case of a disordered 
array of sinks is also considered and the leading order nonanalytic density 
dependence of the rate coefficient is calculated. In both cases an increase in 
the rate coefficient with sink density in a local region of the system is found. 
The general formalism is extended to examine the modification to the 
particle diffusion coefficient due to the presence of the spheres. For regular 
arrays of spheres, the mean field result is reproduced. 

KEY WORDS: Diffusion-controlled kinetics; diffusion; suspensions of 
spheres; regular arrays. 

1. I N T R O D U C T I O N  

The  descr ip t ion  o f  d i f fus ion-control led  react ions  has a long history,  da t ing  
back  to Smoluchowski ' s  p ioneer ing  s tudy in 1916J 1> The ma jo r i t y  o f  the 
subsequent  invest igat ions have been concerned  with  the abso rp t ion  o f  par -  
t icles by  a single sink, bu t  there have been some studies o f  compe t i t ion  effects 
due  to  the presence o f  many  s inksJ  2~ Our  s tudy is mos t  close in spir i t  to the 
work  of  Fe lde rho f  and  Deu tch  C3> on such compe t i t ion  effects and  the resul t ing 
concen t ra t ion  dependence  o f  the rate  coefficient. 

In  this study, we present  a general  fo rmal i sm enabl ing  us to obta in ,  in 
the  l inear  response regime, an exact  expression for  the react ion rate  coefficient 
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for particles diffusing among an arbitrary arrangement of stationary spherical 
sinks. The fluid in which the sinks are suspended and through which the 
particles diffuse is treated as a continuum. Allowance is made for the pos- 
sibility of an incomplete absorption of particles. In a separate section, we 
extend our formal theory to facilitate an examination of the effect that the 
presence of spheres in the fluid has on the diffusion coefficient of the particles. 

In Section 2, starting from the diffusion equation, extended to all space 
by an appropriate sink term, we derive an expression for the reaction rate 
coefficient, in the zero-wavevector limit, expressed in terms of an internal 
response function, relating the sink and density fields, and the diffusion 
propagator. The dependence of the internal response function on the external 
one-sink response function is next established by means of a local field 
analysis. 

In Section 3, in the course of investigating the nature of the external 
one-sink response function, we determine its symmetry properties and then 
derive its explicit form using two different methods. Both techniques, never- 
theless, are based on the multipole expansion of the one-sink response func- 
tion and use the "radiation" boundary condition. The calculation of the first 
two moments of the sink field, besides being instructive by itself, allows us to 
establish a Fax6n-like theorem for chemical reactions, similar to the extension 
of the usual Fax6n theorem derived by Mazur and Bedeaux. (~ Since the 
calculation of higher multipoles by this method becomes prohibitively diffi- 
cult, we present an alternative calculation--valid for all terms in the expansion 
--in the zero-frequency limit. 

To demonstrate a numerical calculation utilizing the general theory, we 
solve completely, in Section 4, the problem for an infinite regular array of 
sinks, examining in particular the simple cubic and face-centered cubic 
lattices. These regular array calculations employ techniques used earlier in 
the study of the dielectric properties of crystals (5~ and the effective viscosity 
of regular arrays of spheres. (6~ For the steady-state situation, we find that only 
the monopole term of the one-sink response function multipole expansion 
contributes, due to the highly symmetric nature of the cubic lattices. Our 
calculation, which is valid for all sink concentrations, predicts the rate 
coefficient, which measures the rate of disappearance of particles in a locally 
uniform region of the system, to increase with the sink volume fraction. More- 
over, for this system we are able to obtain an analytic expression for the rate 
coefficient for all concentrations. 

In Section 5, we consider the application of the general formalism 
developed in Section 2 to the case of an irregular array of suspended sinks. 
Although a complete analysis of this situation is not attempted, the lowest 
order nonanalytic sink density correction to the rate coefficient is calculated. 
The calculation closely parallels the Debye-Hiickel theory of electrolyte 
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solutions: First, a formal density expansion of the rate coefficient is carried 
out, leading to divergent integrals in certain classes of  events. The most  
divergent ring events are next identified and summed to yield a correction to 
the rate coefficient, which varies as the square root of the sink concentration. 
Our result to this order agrees with that of  Felderhof and Deutch. ~3> 

In Section 6, where we examine the modification to the diffusion coeffi- 
cient, we reproduce the mean field result for a regular array of  spheres. 
Relative to the diffusion coefficient of  the particles in the absence of the 
sinks, we observe a decrease for the complete reflection boundary condition. 

The results are summarized and discussed in Section 7. 

2. GENERAL T H E O R Y  2 

2.1. Formal Results 

'The equation of motion for particles diffusing among stationary reacting 
sinks is given by 

n(r, t) = Do V%(r, t) - 5:(r, t) 
Ot 

(1) 

where n(r, t) is the density field of  the diffusing particles, Do is the diffusion 
coefficient in the absence of sinks, and S:(r, t) is some appropriate sink term. 
The introduction of this sink term precludes the necessity for specifying the 
boundary conditions on the surface of the sink at this stage of the calcu- 
lation. 3 

The formal solution of Eq. (1) is 

n(r, t) = no(r, t) - f dr' dt' fr - r ' ,  t - t ' )S:(r ' ,  t ' )  (2) 

where no(r, t) is a solution of the diffusion equation without sink term 
present, and the diffusion propagator  go(r, t) is given by 

f#o(r, t) = (4~rDot) -312 exp(-r2/Do t) (3) 

2 A study of the shear viscosity of a suspension of spheres using analogous techniques 
can be found in Ref. 7. 

3 In this paper we shall primarily be concerned with the structure of the frequency- 
dependent rate coefficient k:(co). In order to obtain an expression for this quantity we 
do not need to pose a specific initial value problem; rather it is convenient to work with 
the Fourier components of the density field. For the relation of this type of formalism 
to the solution of specific initial value problems see, e.g., Ref. 14. 
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In the linear response regime, the sink field 5~(r, t) can be related to the 
density field by the response function s(r, t [r', t'), 

5P(r, t)  = f dr' d t '  s(r, t[r', t')n(r', t ' )  - sn (4) 

Thus, the internal response function s formally accounts for the overall 
perturbing effect that the presence of the suspended spheres has on the 
density field of the particles diffusing through the solvent. When this expres- 
sion is used in Eq. (2), we can write the formal relation 

n = (1 + fCoS)-lno (5) 
and using Eq. (5) in (4), we find 

5 r = s(l + fgoS)-lno (6) 

Ensemble-averaging Eqs. (5) and (6) over the sink distribution, it is easy to 
show that 

(5  p) = (s(1 + ~foS)-l)((1 + f Y o s ) - l ) - l ( n )  - S ( n )  (7) 

The average above may be interpreted as an average over regions large com- 
pared to the sinks and small compared to the variations in no, or as an 
ensemble average over sphere configurations, e.g., 

< - - - )  = E-1 dR1 ... dlt~ exp[--~WN(R~)] - - -  
N=I ~'~ 

where E is the grand partition function and WN is the effective potential 
energy for N sinks in the fluid, which determines the sink distribution. 

More explicitly, in (k, o~) representation we can write 

<5~)(k, ~o) = (27r)-~ f dk' dco' S(k, wlk', o/)(n)(k', w') (8) 

Due to the stationarity and translational invariance of the system, S(k, w lk', ~') 
is diagonal: 

S(k, ,,~lk', ~o') = S(k, o~)(2~-) 4 3(k - k') 3(~o - w') (9) 

We shall identify the k = 0 limit of S(k, ~) with the rate coefficient 

k f (w)  = S(k = O, co)N~ -1 (10) 

where N~ is the number density of the sinks. 
Higher order terms in k will yield corrections to the diffusion coefficient 

because of the presence of sink terms. This division is somewhat arbitrary 
for the higher order terms. In this article, we shall primarily be concerned with 
the structure of the rate coefficient k r. 
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2.2. Local Field Analysis 

In order  to obtain the rate coefficient we must  first calculate the response 
funct ion s in Eq. (4). In this subsection, we show how s can be related to the 
external response funct ion for  a single sink: 

5e(r, t) = f dr' dt' ~(r, tlr', t ')no(r', t ' )  (11) 

I f  there are N sinks in the fluid, then 

N 

5e(r, t) = ~ S~(r, t) (12) 

where 5q~(r, t) is the sink field term corresponding to the ith sink. For  this 
case, we can replace no in Eq. (11) by the effective density field, which also 
contains the density field due to all other  sinks, 

~ ( r ,  t) = f dr' dt' a(r - R~, tlr' - R~, t')ni,ef1(r', t ' )  (131 

where [cf. Eq. (2)] 

n,.orf(r, t) = no(r, t) - Y',i Y dr' tit' ~o(r - r', t - t ' ) ~ ( r ' ,  t') (14) 

Assuming that  the sinks are nonoverlapping and nontouching spheres of  
radius a, and introducing the cutoff  function 

0(r) = f ~ if  r < l  
if  r > l  

where l can lie between E and 2a - e, with e an infinitesimally small positive 
number,  ~ we find that  Eq. (14) becomes 

n,,~ff(r, t) = no(r, t) - ~ / dr' dr' ~o(r - r', t - t')O(r' - R , )~( r ' ,  t ' )  

= no(r, t) - f dr' dt' ~o(r - r ' ,  t - t ' )0(r '  - R~)Se(r ', t ' )  (15) 

Summing Eq. (13) over i and using Eq. (15), we have that  

5~'(r, t) = _f dr' dt' a~(r, t Ir', t ')no(r', t ' )  

- f  dr' dt' H~(r, t lr ' ,  t ')S~(r', t ' )  (16) 

or, in formal  notat ion,  

5 p = %n0 - Ho5  a (17) 

4 The flexibility in the choice of 1 arises from the use of the multiple expansion (see Ref. 7). 
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In writing Eq. (16), we have defined the following two operators: 

and 

Ho(r, tit ' ,  t ') 
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N 

%(r, tlr ' ,  t ') = ~ o(r - Ri, tlr '  - R,, t ') (18) 
i = 1  

~ - - - t"  - t ' ) 0 ( r '  R 0 ( 1 9 )  =- dr" dt" ~(r R~, t lr" R~, t ")~0(r" r,' 

If we use Eq. (2) for no in Eq. (17), and solve the resulting equation for 5~, 
we find 

5 e = (1 + H~ - %fYo)-labn (20) 

Comparison with Eq. (4) yields 

s = (1 + H~ - %No)-~ob (21) 

Equation (21) expresses the response function s in terms of the one-sink 
response function e and the propagator g0. The following section is devoted 
to the calculation of the response function for a single sink in an arbitrary 
density field. 

3. O N E - S I N K  R E S P O N S E  F U N C T I O N  

The form of the one-sink response function depends on the nature of 
the boundary conditions that the density field satisfies on the sink's surface. 
In the calculations which follow, we assume that the sinks are spherical and 
make use of the ~ radiation" boundary condition(a~: 

kDr-Vn(r, oJ) = kon(r, oJ) at r = a (22) 

where ko = 4rrDoa is the Smoluchowski rate coefficient and ko is a parameter 
which can be identified as a specific bimolecular rate constant. When ko = 0% 
we have complete absorption of particles on the sink's surface, while if k0 = 0 
there is no reaction. 

In order to calculate the response function, we made use of a multipole 
expansion, 

~ ( r ,  t l r ' ,  t ' )  = ~ ( r ,  t - t ' l r ' )  

= 2 (-1)m+~(m[ n!)-lCmn(t -- t') �9 [V~S(r)][VmS(r')] (23) 
m , ~ = O  
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or in (k, o 0 space, 

or(k, ~olk' , o~') -- o(k, o~lk')2~r3(o~ - ~') 

= ~ (m! n !)-  ~r �9 ( - -  ik)"(ik')m2rr6(~ - co') (24) 
ttl ,n = O 

In the following subsections, we shall discuss the various properties of cr and 
derive its explicit form using two different techniques. 

3.1. Symmetry Properties 

By an analysis similar to that in Appendix A of Ref. 7, one may easily 
establish that the one-sink response function satisfies the following symmetry 
relations: 

and 

~(r, tlr ' ) = ~(r', tlr) (25) 

c T m n ( t )  = c r n m ( t )  (26) 

In Fourier space, these relations are 

a(k, w[k') = a ( - k ' ,  oJ f - k )  (27) 

and 

o-m'~(w) = crnm(w) (28) 

3.2. Direct Calculation of Moments  

Pursuing the strategy outlined in Appendix B of Ref. 7, we shall calculate 
the first two terms of the response function's multipole expansion. The 
calculation uses techniques developed by Bedeaux and Mazur in a generaliza- 
tion of Fax6n's theorem, (~) and will in fact establish a Fax6n-like theorem for 
chemical reactions) 

We first write the sink term as a multipole expansion 

S~(r, w) = ~ (-1)~(nt)-lS~(co) O [V%(r)] (29) 
~l=0 

where the nth-rank tensor Sn(w) is given by the nth moment of 5e(r, ~o), 

= fv dr 5e(r, o~)rvlr~2 ... rv, (30) S~lv~...~, 

5 The .calculation of the moments for the radiation boundary condition is also similar 
to the partial slip calculation of Fax6n's theorem carried out by Albano et al. ~9~ 
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Since these moments can be related to the corresponding terms in the 
multipole expansion for the response function} ~ i.e., 

S"(co) = ~ (m!)-lcr~n(~o) (3 [(V')~n0(r ', ~o)],,=0 (31) 
m = O  

we can solve for the cr ~n by explicitly calculating the appropriate moments. 
Averaging Eq. (22) over the sink's surface, one obtains 

kDa~,.Vn(r, ~o) s = kon(r, co) s (32) 

where 

l"  
( . . . ) s  = (4~ra 2)-~ Jv dr 8(r - a ) ( . . . )  

Applying the divergence theorem to the right side of Eq. (32), one can 
easily verify that 

�89 2 V2n(r, oJ) v = kon(r, o~) s (33) 

where ( . . . )v  denotes a volume average: 

~. . . )v = (4~raa/3)-i fv dr ( . . . )  

If we take the surface average of the time Fourier transform of Eq. (2), 
we find 

n(r, co) s = no(r, w) s - A(oJ) (34) 

where 

and 

A(w) = fr0(a, w) f dr' (~r ' )- i  sinh(~r')Se(r', ~o) (35) 

fro(r, co) = (4rrDor)-I e x p ( -  ~r) (36) 

with a = ( -  ioJ/Do) 112. It now readily follows from the Fourier transform of 
Eq. (1) that 

V2n(r, o~) = ~2n(r, co) + Dg 16a(r, oJ) (37) 

and the radiation boundary condition can be rewritten as 

�89 c~ + fv dr 6e(r, co) = kon(r, o~) s (38) 

Since n(r, ,~)v = 0, and with the use of Eq. (34), we find that Eq. (38) simplifies 
to 

fv dr Se(r, ~o) = kono(r, co) s - koA(o~) (39) 
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and hence, 

A(~o) = no(r, oJ) s - k g l j ~  dr St(r, m) (40) 

Next, averaging Eq. (2) over the volume of the sink and noting again that 
n(r, m) v = 0, one obtains 

3(~a)-2 fv  dr' St(r', m) + 3(aa)-2(1 + .a)A(m) (4i) 0 = n0(r, m) v - - kD 

Making use of Eq. (40), we finally obtain the expression for the first moment 
of St(r, ~o): 

dr St(r, w) = ko + k~(1 + aa) 

The flux of particles across the surface of the sink, 6p, can be obtained 
by integrating Eq. (1), for the case of a single sink, over the volume of the 
sink. The result is 

O(~ = 4~ra2D~ ( ~ )  r=a = j ;  dr St(r, w) (43) 

or, using Eq. (42), 

kDko [ ~  no(r----~ m)V + (l + c~a)no(r,-~)s I (44) 
q3(m) = ko + kD(1 + ~a) 

Equation (44) constitutes a type of generalized Fax6n theorem for reac- 
tions, in that the particle flux, being the analog of the force, is related to the 
surface and volume averages of the density field in the absence of the sink. <4) 

If we consider the case of a constant external density field no(w) and 
use the fact that V2no(r, co) = a2no(r, w), then Eq. (44) becomes 

kDko(l + aa) 
c~(~o) - ki(m)no(oO = ko + k~(1 + aa)no(u) (45) 

Hence, the rate coefficient for a dilute suspension of partially absorbing sinks 
in a uniform external density field is 

kokD(1 + ~a) (46) 
ks(~ = ko + kD(1 + c~a) 

In Appendix A, we demonstrate that 

no(r, ~o) s - (aa) -1 sinh(aa)no(r --- O, w) 

and 

no(r, oO v -= 3(~a)-l[cosh(aa) - (~a) -1 sinh(aa)lno(r -- 0, m) (47) 
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so that for the more general case of arbitrary external density fields, 

fv k~ no(r = 0, o~) (48) dr ;T(r, oJ) = ko + kD(1 + c~a) 

Consulting Eqs. (29)-(31) and (48), we single out 

fv k~ no(r = 0, ~o) S~ = dr ~( r ,  o)) = ko + kz)(1 + aa) 

= ~ (m[)-lo'm~ O [(V')mno(r ', co)]~,=o (49) 
m=O 

from which we conclude that 

k~ (50) ooo(~o) - ~oo(o~) - k~O)(~o) = ko + k~(1 + ~a)  

and 

em~ = 0 for m # 0 (51) 

The calculation of the second moment follows a similar strategy. Only 
the result is presented below, and some details are given in Appendix B. We 
find 

3kD[1 + ~a + ](~a)2]]-l[3kD[1 + ~a + �89 2] 
~l~(w)= ~1~1 = 1 - ~ - ~ _ - ~ a ) - ~ - - ~  1 [ 1 + ~ a  

x a2 j=o ~ 2(J(2j + +l)(~a)2' + 3 ) !  ? (aa)2a2 ,=o ~ 6(J(2j + ~-l)(aa)2'] ~ ]1 

(52) 

eml(o~) = 0 for m r 1 (53) 

and 

3.3. Calculation Employing Explicit Solutions for Density Fields 

We shall present in this subsection an alternative calculation of the 
external one-sink response function. Moreover, we shall demonstrate that for 
vanishing frequency, all the multipoles are explicitly known. 

In view of Eqs. (29) and (31), Eq. (2) may be rewritten as 

n(r) = no(r) -- ~ (--1)ncsmn(m! n!) -1 @ [Vnf~o(r)][(V')mno(r')]~,=o (54) 
m,r~ = 0 

Since the density field no(r) appearing above is arbitrary, we shall require 
it, for reasons which will shortly become clear, to assume the form 

no(r) = a, (3  r ~ ( l  = O, 1, 2 , . . . )  (55)  

for some spatially independent/-tensor a,. 
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In a steady-state situation, solutions to the diffusion equation 

V2n(r) = 0 (56) 

for the radiation boundary condition at the sink's surface, and given the form 
in Eq. (55) far from the sink, are readily constructed. Indeed, the general 
solution takes the form 

n(Z)(r) = a~ �9 @ + c, Vt ~) (57) 

where 

2 l +  1 a2 ~+z l -  (ko/kv) (58) 
cz = ( - 1 )  z ( 2 / +  1)!! 1 + 1 + (ko/kv) 

Using this general solution, for l = 0, 1, 2 ..... along with Eq. (54), we 
can derive the tensorial properties of cr m", and furthermore, generate its 
general expression. 

Equating Eqs. (54) and (57), we obtain 

c~azoVzlr =-~ ( - l ) ~ a z " O ( l ! n ' ) - ' ( v  ~ l  )a~ (59) 
7 ~=0  

from which we conclude: 

{ ;  z' if n = /  
(i) 0 -l" = (60) 

otherwise 

(ii) u _z~ ~ ~ (6t) cr~i/L~.,.jZ/yl~2,.,y I ~ U t)j~171 /L2Y2.o.Uj~/~Z 

(iii) o zz = - 4zrDo(- 1)~c~(/!) z (62) 

We note that these results are in complete agreement with those of the 
previous subsection when ~ vanishes. 

4. REGULAR A R R A Y  OF SINKS 

Having developed the formal theory for diffusion-controlled processes 
for a uniform distribution of spherical sinks, we shall now specialize to the 
case when the sinks form an infinite, three-dimensional perfect array sus- 
pended in the fluid. Both the simple and face-centered cubic lattices will be 
examined. Although this is a highly idealized situation, the calculations can 
be carried out for arbitrary sink densities, and hence, much information about 
the concentration dependence of the rate coefficient can be obtained. 

For a regular array of suspended spheres, the averaging procedure used 
in Section 2 is not necessary. Instead, we utilize the periodic nature of the 
array in order to derive results which are valid for small wave vectors. 
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4.1. Monopole  Approximat ion 

As we have already seen [cf. Eq. (6)] the effect that the presence of the 
sinks has on the density profile of diffusing particles can be described by the 
external response function S~xt, 

with 

or, using Eq. (21), 

5" = so~tno (63) 

s~xt = s(1 + ~oS) -x (64) 

soxt = (1 + Ho)-lab (65) 

It is clear from the definitions of the operators Ho and % [cf. Eqs. (18) 
and (19)] that Sext is a periodic operator, and Eq. (63) can now be rewritten 
in (k, co) space as (5) 

5Qk, co) = ~ S~xt(k, co)n0(k - k . ,  oJ) (66) 
/z 

where s~t is the discrete operator representation of s.xt, and the k.  are the 
reciprocal lattice vectors. Before obtaining an explicit expression for s~t,  we 
observe that in Fourier space the operator ab becomes 

ab ~ ka) (67) ~ 0 ~ ,  ~ l k ' )  = (2=)  ~ ~ 0~, ~ ) 8 ( k  - k'  - -y, 

where 

aba(k, w) = k}~ (68) 

In the derivation of the above identity, use was also made of the 
relation (5) 

Ns ~ exp(ik.r) = ~ 8(r - R 0 
h i 

where N~ is the number density of the sinks. 
A straightforward algebraic manipulation, which we defer to Apper~dix 

C, of Eqs. (65) and (68), together with the observation of the periodicity of 
the operators (1 - Ho)- ~ and ab, yields 

sgxt(k, ~o) = k~~ + k}~ w)]-~ (69) 

where 

J/f (k, w) = ~ H(k - ka, o~) = ~ '  ~o(k - ka, o 0 
h h 

(70) 

The last equality follows directly from the definition of the cutoff operator 
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H(r, t) = No(r, t) if r > /, and 0 if r < l; 0 < l < 2a. The prime on the 
last lattice sum denotes the exclusion of the origin. 

Due to the obvious periodic nature of the internal response function s, 
one may recast Eq. (4) in (k, o~) space into 

5r w) = ~ s"(k, w)n(k - k,) (71) 
lz 

Furthermore, one may verify that 

sU(k, oJ) = k}~ + k}~ 
\ }1 

x ~ [H(k - ka, ~o) - fgo(k - kh, w)l (72) 

Since our aim is to obtain a macroscopic expression for the reaction rate 
coefficient, we restrict ourselves to small wave vectors in the first Brillouin 
zone. Hence, retaining terms corresponding to/~ = 0 in each of Eqs. (66) and 
(71), and using Eq. (2), we obtain 

5~ co) = [1 - s~ ~o)fgo(k, w)l-ls~ w)n(k, w) 

= s ~ w)n(k, w) (73) 

from which we identify 

s~ oJ) --- [1 - sgxt(k, w)ffo(k, c~)]-ls~ co) (74) 

Substituting into the above equation the explicit expression for sg~(k, w), 
Eq. (69), we obtain the desired form of the internal response function: 

s~ co) = {1 + k}~  ~o) : No(k, oJ)l}-lk}~ (75) 

The k = 0 limit of sO(k, oJ) can be identified as the macroscopic rate 
coefficient ks(co)N~ = s~  = O, w), i.e., 

kr(oJ ) = k}~ + k}~ o~)]-z (76) 

where we have introduced the nonsingular lattice sum 

M(0, oJ) = J/d(0, co) - fr w) (77) 

4.2. Contr ibut ions from Higher Order IVlultipo|es 

When k = 0, one may readily verify that the operator cr~-~ appearing in 
Eq. (C1) assumes the general form 

~ - ~ ( - k . ,  o~) = ~ &(~o)0~..k~) ~ (78) 
r ~ = 0  
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where the A~(oJ) are some appropriate frequency-dependent coefficients, for 
example, A0(~) = k}~ Furthermore, Eq. (C5) generalizes to 

3~,0 = f~ + ~ A,~(oJ)f ('~) �9 kfl~H(-kA, o~) (79) 
n = 0  

where 

f(")= ~ fuk,"  (80) 

Successive multiplication of Eq. (79) by ka ~ followed by summation gives the 
identity 

3,,0 = f") + ~ A.(oJ)f <") C) o qg<"+*) (81) 
r~=0 

where we have defined the tensorial lattice sum 

~(")  = ~ ka"H( -ka ,  co) (82) 
A 

For a cubic lattice, symmetry considerations simplify the form of these 
sums considerably. First, only lattice sums o~ ~") with n even assume non- 
vanishing values. Second, the tensorial nature of these sums can be exactly 
specified: 

~f(").~.~2""../2~.12 = ~"P.~.2~a'"..I2..123.~S.2~2 "'" 3..J2~.1~ (83) 

Here, o~/g. is a scalar lattice sum defined by 

1 
-2. 

(84) 

and P.l~r....j~.~2 denotes the summation of all possible permutations of 

8uzvl ...  8~r~lav,~t2. 
Following the scheme outlined in Appendix C, it can be demonstrated 

that 

sgxt(0, o~)= Ao(~)[1 - .=0~ A.(o0f"' O~(" 1 (85) 

Since the tensors ~.]~1.....~2v.~2 and f}~l.....~2v.~2 are symmetric with respect to 
the interchange of any two indices, and furthermore, 24~ = a"Jr an exami- 
nation of the matrix of coefficients for the n simultaneous equations in f(0), 
f(2) ..... f(~) allows one to conclude that, in the zero-frequency limit, Eq. (85) 
simplifies to the monopole result. 
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4.3. Calculation of Lattice Sums 

The techniques employed in transforming slowly converging sc and fcc 
lattice sums into rapidly converging ones via the Nijboer-de Wette modifica- 
tion of the Ewald method <~~ have already been described in Ref. 5 and the 
Appendix of Ref. 6. By the same procedure, the lattice sum M(0, w) [cf. Eq. 
(77)] may be shown to be 

Do 

b2N~ N~ (86) 
+ ~ + (2~rD~ io~ 

where 

The explicit expressions for the lattice vector R~ and the reciprocal lattice 
vector k~ can also be found in the Appendix of Ref. 6; b is a cutoff parameter 
of the order of the lattice spacing. 

For zero frequency, Eq. (86) simplifies to give 

N~ ~ ,  k~ 2 exp - ~  ka 2 N~M(0, 0) = - (4~rD0)-i ~ R;-1 erfc 

b2Ns _ m ~lfa (87) 
+ (2~rDob)-1 + 4r - kv ~- 

where ~ is the volume fraction, 

4 ,m3N ~ = 4~ a 3 
= 3 d 

and d is the length of the unit cell, and the prime on the summation sign 
excludes the origin. 

Having performed the summations in Eq. (87), we obtained the following 
results: 

sc lattice m = 1.760 (88) 

fcc lattice m = 1.792 (89) 

Thus, the zero-frequency rate coefficient takes the form [cf. Eq. (76)] 

k~ = k}~ ( 1 +  ~o)-1mr -1 (90) 

The graphs of the rate coefficient as a function of q~1/3 for various values 
of kD/ko are given in Fig. 1 for both the sc and fcc lattices. Several important 
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Fig. 1. Rate coefficient ke(O)/k} m as a function of ~1/3 for various values of ko/ko for (a) 
simple cubic and (b) face-centered cubic lattices. The closest packing for (a) and (b) 
occurs at ~1/a = 0.806 and ~1j3 = 0.904, respectively. 

observations can be made: First, we note the characteristic increase and 
eventual divergence of the rate coefficient as the sink volume fraction in- 
creases. Second, as the ratio k , / ko  increases from the initial value of zero, 
corresponding to complete absorption, the pole shifts to higher values of  
volume fraction; eventually, the singularity appears for unphysical values of 

only, i.e., values greater than closest packing. 
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The increase of the reaction rate coefficient with the sink density has 
already been discussed in some detail by Felderhof and Deutch ~a~ for a dis- 
ordered array of sinks, and was attributed to a screening phenomenon. 

The main merit of the preceding calculation is that it can be carried out 
exactly for an arbitrary value of ~, thus allowing one to compute the rate 
coefficient for all values of the volume fraction. 

Finally, we wish to point out the similarity of the above results to those 
for the effective shear viscosity of a regular array of suspended spheresJ ~) 
In fact, since the particle diffusion coefficient will be affected by the shear 
viscosity, we expect that an increase in the viscosity will lead to a corre- 
sponding decrease in Do. Hence, a complete description of the rate coefficient 
in this rapidly increasing region also requires a consideration of such viscosity 
effects. 

5. D ISORDERED A R R A Y S  OF SINKS 

In this section, we shall progress one step further and consider a more 
commonly encountered physical system, namely, randomly distributed 
stationary sinks. To greatly simplify the computation, we shall restrict our- 
selves to the lowest multipole calculation; physically, this amounts to 
regarding the sinks as being point particles. 

The calculation of the general sink concentration dependence of the rate 
coefficient is a difficult problem, even with the monopole approximation to 
the response functions. This should be contrasted with the regular array 
calculations presented above, where the rate coefficient could be calculated to 
all orders in N~. We shall not attempt a complete solution to this problem 
here, but rather, simply illustrate how the general formalism in Section 2 can 
be applied to disordered arrays of sinks, and calculate the leading order sink 
density contribution. In the following subsections, we shall assume that the 
complete absorption boundary condition applies. 

5.1. Formal Relation for the Rate Coeff ic ient  

In Section 2, we derived the following formal expression, whose zero- 
wavevector limit was previously identified with the reaction rate coefficient 
[cf. Eq. (7)]: 

S = (s(1 + f~oS)-l)((1 + NoS)-l) -1 (91) 

Substituting into this equation the actual form of the internal response 
function [cf. Eq. (21)], one finds that 

S = <%(1 + /-/,)-1)<[l + ~o(1 + %K)-*%]-1) -1 (92) 
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where we have also defined a new opera tor  K by 

K(r, t lr', t ' )  = K(r  - r ' ,  t - t ' )  = No(r - r ' ,  t - t ')[1 - 0(r - r ')] (93) 

which vanishes if  Ir - r' I > l. 

Fol lowing a procedure  originally used in the study of  dielectrics (5) and  
later of  the shear viscosity of  sphere suspensions, (7) we next introduce a 
convenient  opera to r  A by the following definition: 

S ~ (1 - A K ) - I A  (94) 

where A is given explicitly by 

A = (%(1 + a , ) - l ) < ( 1  + H , ) - ~ )  -1 (95) 

In  Four ier  t rans form space, the zero-frequency limit of  the rate coefficient 
is now easily at ta inable by explicitly comput ing  K and using the diagonal i ty  
of  the opera tors  S, A, and K. The  latter s ta tement  follows directly f rom the 
t ranslat ional  invariance and stat ionari ty of  the system under  consideration.  

Thus,  one obtains  

)1-1 S(k, co -= 0) = 1 1 - cos kI A(k, oJ = 0 A(k, ,u = 0) (96) 
Do k2 

where e ~< l ~< 2a - E (cf. Section 2.2). 
Expressions analogous to the ones above proved to be extremely useful, 

for  bo th  dielectrics and sphere suspensions, in mean  field theoretical  investi- 
gations,  as well as in considering the effect of  correlations. 

We may  now take the ! -+  0 limit o f  Eq. (96) to obtain 

ky(o~ = 0)Ns = S(k = 0, co = 0) = A(k = 0, a, = 0) (97) 

The  calculation of  the rate coefficient is thus reduced to an evaluat ion of  A. 

5.2. Corre la t ion Contr ibut ions  to the Rate Coef f ic ient  

The strategy of  this calculation is straightforward(7): The opera tor  A is 
first expanded in powers  of  the sink number  density N~. This, in turn,  
facilitates the identification of  various classes of  even t s - - some  of  which are 
represented by infinite series of  divergent d i ag rams- -wh ich  may  then be 
analyzed using techniques familiar f rom ionic solution theory. (1~) 

Before proceeding with our  p rogram,  however,  we must  first review the 
external one-sink response funct ion 6 %~r in view of  the previously stated 

6 The index N serves to emphasize dependence on the number of sinks under investigation. 
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approximations which are to be made. Thus, referring to Eqs. (23), (24), and 
(50), it is clear that 

aJ ( r ,  o~lr', w') = kD[N~(r) ~(r - r')]ZTr3(oJ - co') 

~- abN(r, wIr')2~rg(oJ -- w') (98) 

Here, the sink density is denoted by 

N 

N,(r, o 0 = 2~r3(o 0 ~ 8(r - R0 - 2~-3(o~)N,(r) (99) 

In writing Eqs. (98) and (99), use was made of the fact that only equal time 
correlation functions ought to be used in the linear regime. 

In order to cast Eq. (95) into a more suitable form, we define yet another 
operator: 

-= abN(1 + H%N) -~ (100) 

where the cutoff operator H - fr has already been introduced in Section 
4.1. Clearly, Eq. (95) is now given by 

A = (~N)[1 -- H ( ~ ) ]  -1 (101) 

To obtain a density expansion of  A in Eq. (101), we first carry out a 
standard density expansion of the grand canonical ensemble average of ~ .  
To second order in N~ we find 

( ~ )  = N~ f dRt ~(r~) +  msef dR~ dR2 e -'W2(sx~) 

x [Je(R~, R2) - ~ (R1)  - ~(R2)]  + O(N~ 3) (102) 

Substituting this result into Eq. (101) and collecting terms of equal order in 
N~, we find that the operator A now becomes 

A = NsAx + Ns2A2 + O(Ns s) (t03) 

where the At are given by 

A~ = ( dR~ ~(R~)  (104a) 
3 

and 

A2 = �89 f dR1 dR2 e-BW2(n12)[o~2(R~, R2) - o~(R1) - ~(R2)]  

+ f dR1 dR2 ~ ( R ~ ) H ~ ( R 2 )  

with analogous expressions for higher order A,. 

(104b) 
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Each one of these A~ must be analyzed utilizing the definition of the 
operator ~N [cf. Eq. (100)]. Deferring all technical details to Appendix D, 
we briefly summarize below the results, which yield the rate coefficient up to 
the first sink density correction: 

(a) To all orders in the cutoff propagator, 

= f dR1%1(R~) = kD (105) A1 

which by itself yields, upon substitution into Eqs. (103) and (97), the value 
of the reaction rate coefficient in the absence of correlations: 

k/(oJ = 0) = kD (106) 

(b) Divergent integrals are encountered when the higher order A~ are 
calculated. For example, a two-vertex ring event is obtained when terms to 
second order in H are retained: 

A2n = I dR~ dR2 abl(R1)H%I(R2)Haol(R1) 

kD a f j  dk = ~ ~-~ (107) 

The superscript R on A: refers to the ring nature of the contribution. The 
two vertex [O(N~2)] term, which is third order in H, also diverges, though not 
as strongly as A2 n above. All terms of higher order than third in H are well 
behaved. 

(c) To each order in N~, a similar type of ring event can be identified. For 
example, the three-vertex term, which is third order in H, is such a contribu- 
tion: 

A3 R = - ~  dR~ dR2 dRz %~(R~)H%~(R2)H%l(R3)Hao~(Rx) 

--kD ~ fo ~176 dk - 2~r2Do 3 k- ~ (108) 

Several remarks can be made: First, it is clear that there are different 
classes of events, viz. "multiple scattering" processes. The various "multiple 
scattering" events encountered in this problem, including the cyclic one seen 
above, have the following interpretation: They describe the cooperative effect 
of various sink configurations in perturbing the density field of the diffusing 
particles. This, indeed, is the basis for the correlation contribution to the rate 
coefficient. Second, as is evident from the discussion in Appendix D, only 
"closed" events occur, i.e., each vertex, represented by abl(R), has at least 
two "bonds," each denoting the propagator H, emanating from it. 

In order to calculate the first sink density correction to the rate coefficient, 
we may make use of techniques which are reminiscent of the Debye-Hiickel 
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Fig. 2. Ring contributions to the operator A. The open circle represents the external 
one-sink response function a~(R); the bond ( ) denotes the propagator H. 

theory of electrolytes. We already noted above that, to each order in the sink 
density, a ring event which is most divergent can be identified. By a graphical 
analysis (cf. Fig. 2), one may show that these form a geometric series, which 
can be summed to yield a finite result. More explicitly, the required series is 
given by 

AR(k=_0, t o = 0 )  k~3N82 fo~~ dk [ kDNs (kDNs] 2 ] 
- 2~r~D- ~ ~ 1 - Dok----- 5 + \Dok2] "" 

kD3N~ 2 fo ~ dk kD (109) 
- ~ k 2 + Ks ~ = 4--g ,%a 

where the inverse screening length K8 is given by K~ = (kDN~/Do) ~/2= 
(4~raNs) 1/2. When the above sum is used in conjunction with Eqs. (105) and 
(97), we finally obtain the following expression for the reaction rate coefficient: 

kf = kD[1 + (3r 1/2 + O(r (l l0) 

where r is, as before, the sink volume fraction. This result is in agreement 
with that of Felderhof and Deutch, which was computed by another method. 

A systematic computation of higher order sink density corrections to the 
rate coefficient requires a careful analysis of the other classes of multiple 
scattering events. Again, the calculation will be similar to the electrolyte 
problem, but additional complications arise in the higher order density terms 
due to the direct interaction between the sinks. Nevertheless, as long as the 
sink distribution is determined by short-range forces, the precise nature of 
these forces will not affect the N:/2 correction term. This is due to the fact 
that this arises from the long-distance behavior of the diffusive propagator. 

Probably a more tractable way of extending such calculations into the 
high-density regime is by making use of effective field methods. Such methods 
have proved useful in the study of the friction and viscosity of concentrated 
sphere suspensions. r 

6. D |FFUSION OF PARTICLES A M O N G  
S T A T I O N A R Y  SPHERES 

In the previous sections we were concerned with the calculation of the 
rate coefficient, and made no reference to the modification of the diffusion 
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coefficient of the particles due to reaction. Indeed, even for completely 
reflecting spheres, the diffusion coefficient is modified by the sphere distribu- 
tion. To illustrate this, we shall examine in detail the purely diffusive situation. 
We do so for two reasons: First, the calculation is considerably simplified, 
allowing us to extend the previously discussed formalism. Second, the problem 
by itself is an interesting one, since it may have an application to diffusion in 
solids. 

6.1. General Results 

In order to derive an expression for the diffusion coefficient, we exploit 
the fact that the " s ink"  term can be written as the divergence of an induced 
diffusion flux field J(r, t), when no particles are absorbed by the spheres. The 
equation of motion then takes the form 

8n(r, t._.....~) = Do V2n(r, t) - V.J(r,  t) (111) 
8t 

The analysis now follows standard lines. We define a response function ~ by 

J(r, t) = - f  dr' dt' ~(r,  tlr ', t ').V'n(r',  t ') - ~ . V n  (112) 

The configurational average of J can be used to define a correction to 
the macroscopic diffusion coefficient 

<j> = - A D . V < n >  (113) 

where, by an analysis similar to that of Section 2, we find 

AD = ( 9 . ( 1  -- VWr - VWr -1 (114) 

In order to use this equation, the internal response function must be related 
to an external one-sphere response function, via a local field analysis similar 
to that in Section 2.2. I f  we define the external one-sphere response function 
~ext by 

J(r, t) = - f  dr' dt' Next(r, t[r', t').V'no(r', t ') (115) 

then we find that 

= (1 + g .VV~o - H r  (116)  

where 
Ar 

~(r, t[r', t') = ~ ~oxt(r - R~, tlr' - Ri, t') (117) 
i = 1  
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and 

H~(r, tiff , t') 

= ~ f d r " d t "  
f . = l  

• ~ e x t ( r  - R , ,  t i t "  - R , ,  t " ) . V " V " f C o ( r "  - r' ,  t"  - t ' ) 0 ( r '  - R 0  (118) 
The one-sphere external response function ~ext can be identified with 

the dipole contribution to the multipole expansion of the previously encoun- 
tered response function a [cf. Eq. (23)], which, for vanishing frequency, 
becomes cr 1~ = - 27rDoa a. 

Finally, we observe that in the mean field approximation, i.e., when the 
density operator is replaced by its ensemble average, Eq. (114) becomes 

AD(r, t tr', t ') = (~) ( r ' ,  t[r', t ') 

= [-3r + �89162 8(r - r') 3(t - t') 

= ADo 1 a(r - r') a(t - t') (119) 

where we referred to Eq. (116). Substituting Eqs. (112) and (119) into the 
Fourier transform of the equation of motion [cf. Eq. (111)], we find that 

(- ioJ + kZD)(n(k, oJ)) = n0(k, co) 

where we defined the mean field diffusion coefficient 

1 - ~  Do D -= Do +ADo = 1 ~ �89162  

(120) 

(121) 

6.2. Regular Array of Spheres 

The specialization of the diffusion problem to an infinite, regular 
arrangement of spheres is analogous to the analysis appearing in Section 4. l, 
and we shall therefore only present below the pertinent results. 

The periodic operator can be written as 

~(klk') = (2~) 3 ~ ~(k) 3(k - k'  - ka) (122) 
h 

where 

~ a ( k )  = -2rrDoNsa 3 1 =- ~~ 1 

Defining a new cutoff operator H by 

H(r, t) ___ {:V~o(r ,  t) if r > l  
otherwise 

(0 < I < 2a) 

(123) 

(124) 
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it is straightforward to show that, in (k, w) space, the expression for the 
induced diffusion flux is given by 

J(k, O) = - ~  ext(k, O).i(k - ka)no(k - ka, O) (125) 
h 

where the discrete representation of the periodic operator ~ext is 

~xt(k ,  O) -- 5o[1 - ~~ 0)] -1 (126) 

and 

Q(k, 0) = ~ H(k - ka, 0) (127) 

is a newly defined lattice sum. 
As before, restricting our considerations to the first Brillouin zone, we 

can identify the following relation for the internal response function 9 ,  
expressed in terms of ~o and the elementary lattice sum Q: 

N(k, 0) = ~~ - ~~ 0)] -1 (128) 

with 

K(k, O) = O(k, O) + kk~o(k, O) (129) 

In view of our results for the reactive problem, clearly the lattice sum 
N~Q(0, 0) vanishes, thus allowing us to write Eq. (128) as follows: 

- 3 ~ D ~  1 = ADo 1 (130) 9(0, 0 ) =  i + �89 

where we utilized Eq. (123). We recognize this as the mean field result [cf. 
Eq. (119)]. 

7. D I S C U S S I O N  A N D  S U M M A R Y  

An important feature in any investigation of diffusion-limited reactions, 
via the diffusion equation approach, is the manner by which Fick's law of 
diffusion is extended to account for the presence of other stationary bodies 
suspended in the fluid; the very existence of this suspension perturbs the 
density field of the diffusing particles. 

Traditionally, this problem has been approached in one of two ways. 
First, by the specification of precise initial and boundary conditions to be 
satisfied by the equation of motion. While this procedure may be carried out 
effectively for one, several, or, perhaps, a regular array of sinks, it rapidly 
becomes prohibitively difficult whenever an examination of an arbitrary 
suspension of sinks is required. 

To this end, a second approach exists: namely, the addition of some 
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appropriate sink term to the starting diffusion equation. The issue of stipulat- 
ing the exact boundary conditions is thus temporarily evaded, and a formal 
theoretical development may be initiated. Nevertheless, new complications 
arise; the newly inserted sink field must be expressed in terms of the density 
field, so that useful solutions for the modified equation of motion may be 
obtained. 

This, indeed, was the motivation behind the development of the formal 
theory outlined in this article, whose essence is encompassed in its usage of 
standard linear response theory; the perturbation to the diffusing particles' 
density caused by the presence of the stationary sinks in the fluid was taken 
into account by the introduction of the internal response function s, which in 
turn was written, via the so-called local field analysis, as a function of the 
diffusion propagator (r and the external one-sink response function ~. This 
latter response function governs the reaction of the density field to the intro- 
duction of a single sink into the fluid. Having related the sink and density 
fields, the ensemble average of the equation of motion yielded a simple 
macroscopic law [cf. Eq. (7)], permitting the identification of the zero-wave- 
vector rate coefficient for the absorption of diffusing particles by the suspended 
stationary sinks. 

In the course of this study, a generalized Fax6n-like theorem for chemical 
reactions was derived. This theorem relates the flux of particles across the 
sink's surface to the averages over the sink's volume and surface of the 
diffusing particles' number density field, in the absence of sinks. This theorem 
provides a compact representation of the flux for arbitrary density fields far 
from the sink. In special limits, conventional results are obtained. For ex- 
ample, if we consider a homogeneous external density field, Eq. (45) is 
obtained. This is the commonly quoted Fick's law result for the flux using 
the radiation boundary condition58~ If we consider the case where the external 
density field no is inhomogeneous (but satisfies the diffusion equation), then 

kok De ~ 
�9 (w) = ko + kD(1 + aa) no(r = 0, oa) 

The formal expressions for the rate coefficients derived in Section 2 were 
exact and valid for all frequencies and sink densities. In order to illustrate the 
use of this formalism, several explicit calculations were carried out. 

For the case of a regular array of sinks, treated in Section 4, the pro- 
cedure of averaging over the sink configurations is not necessary and lattice 
sums can be calculated to yield expressions valid for all sink densities. 

Although the model is highly idealized, several important conclusions 
can be drawn: 

(a) The rate coefficient increases and eventually diverges as the sink 
volume increases. 
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(b) The position of the singularity in the relation for the rate coefficient 
depends upon the actual value of the ratio kD/ko. Furthermore, this pole 
shifts to higher values of sink volume fraction, eventually disappearing from 
the physical regime, which ends at closest packing. In fact, one readily notices 
that the singularity in the rate coefficient appears in this physical region only 
for the complete or nearly complete absorption boundary condition (cf. Fig. 
1). This behavior can be attributed to a screening phenomenon. We further 
note that regular array suspensions of spheres have been prepared, (~a~ and 
possibly diffusion-controlled reactions can be studied in such systems. 

The case of a disordered array is treated in Section 5. Here, one must 
deal with the configuration averaging which was avoided in the regular array 
case. After showing that the standard density expansion leads to divergent 
integrals, the most divergent class of terms--the ring events--were summed 
to yield the lowest order nonanalytic sink density correction to the rate 
coefficient. The result agrees with an earlier calculation by Felderhof and 
Deutch, obtained by a different method. 

Finally, recognizing that for particles diffusing among completely reflect- 
ing stationary suspended spheres the "s ink"  field may be given by the 
divergence of an induced diffusion flux field, the present formalism was 
readily extended to allow for the calculation of the effective diffusion coeffi- 
cient, in the linear response regime. The procedure used proceeded along 
standard lines, requiring only minor modifications. For a regular cubic array 
of spheres, the effective diffusion coefficient is the same as the mean field 
result. 

APPENDIX A 

In order to derive the surface and volume averages of n0(r, c~) and 
rno(r, co), we refer to Appendix B of Ref. 7; employing the techniques therein, 
one can establish that 

and 

a2  j 
no(r, co)s = [V2Jno(r, ~)]r= o 

j=o (2j + 1)! 
(A0 

6ja2(]  - 1) 
no(r, ~)v = [ V2~ l~no(r, co)lr = o (A2) r (2j + 1)! 

Since no(r, o~) satisfies the diffusion equation a2no(r, ~o) = V2no(r, ~), therefore 

V2r co) = a2Jno(r, ~) (A3) 

for j = 0 , 1 , 2 , 3  ..... 
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and 

Equations (A1) and (A2) can now be written as 

no(r, ~o) s = ~ (aa)2J no(0, o~) = (~a)-I sinh(~a)no(0, o~) 
j=o (2j + 1)! 

(A4) 

6j(~aW-l' 
no(r, o~)v = j=l  (2j + 1)! no(0, ~o) 

= 3(~a)-l[cosh(aa) - (,a) -~ sinh(-a)]no(0, o)) (A5) 

In the same manner, one can readily show that 

rno(r, o2) s = a 2 ~ 2(j  + 1)(,a) 2j [Vn0(r, w)]r= o (A6) 
s = o  (2j+ 3)! 

o ~  6(j + 
rno(r, w) v = a 2 ~ [Vn0(r, w)]r= o 

j=o (2j+ 5)! 

and 

(A7) 

APPENDIX B 

In this appendix we determine the expression for the dipole contribution 
to the multipole expansion of the response function a. To achieve this, we 
first consider the second moment of 5a(r, oJ). 

From the radiation boundary condition, Eq. (22), we get 

kDrr.Vn(r, co) s = korn(r, o)) s (B1) 

Calculating rr-Vn(r, o~) s explicitly and substituting the result into the above 
equation, we find 

vdr  rra(r, o~) = (k0 - kD)rn(r, ~o) s - � 89  o~) v (B2) 

Expressions for rn(r, o0s and rn(r, o~) v can be easily derived by multiplying 
the time Fourier transform of Eq. (2) through by r and then averaging over 
the surface and volume of the spherical sink, respectively. Thus, 

and 

rn(r, w) s = rno(r, oJ) s - B(w) 

rn(r, r v = rno(r, ~o) v 3(~a)k~-2 fv dr rSe(r, co) 

+ 911 + ~a + �89 2] B(oJ) 
(aa)~(1 + ~a) 

(B3) 

(B4) 
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where 
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f 
B(o0 = ~r o0(1 + ~a) )v dr' r'(~r') -3 

x Jar' cosh(ar') - sinh(ar')]Se(r ', w) (B5) 

We can derive another expression for B(w), in terms of the second 
moment  of 6e(r, w), by observing that rn(r, ~o) v = 0 and using Eqs. (B2) and 
(B3): 

B(o~) = rno(r, co) s - (k~ - ko) - l fv  dr r~ ( r ,  co) (B6) 

which upon substitution into Eq. (B4) yields 

vd r  r6~(r' w) 

3ko[1 + , a  + �89 + aa + �89 2] 
= 1 -  (1 +aa)(kDZ- '~o)  J ] 1 +aa rno(r, r S 

+~-~(~a)2rno(r, oJ) v) (B7) 

or, using the results of Appendix A [cf. Eqs. (A6) and (A7)], 

v d r  r6e(r, oJ) 

f 3kD[1 + aa + �89 + aa + �89 21 
= l -  (1 + ~ a ) ( k D : - ~ o )  ) ~. 1 +act 

2(j + 1)(aa) 2j • a 2 

 =oZ; 

+ ~-~ (aa)Za2 ~=o6(j + l)(~) a)2') .= (2j [Vno(r, w)]r= o (B8) 

Now, relating the multipole expansion of the sink term to that of the response 
function [cf. Eqs. (29)-(31)], we see that 

SZ(w) = ~ (m!)-lcrml(w) Q) [Vmno(r,  W)]r=O 
ra~0 

= f dr r6a(r, w) (B9) 
Jv 
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Comparing this expression with Eq. (B8), we finally conclude that the 
only nonvanishing coefficient is 

3kD[1 + aa + �89 -1 
r = o ~  1 = 1 - ~ ~_ ~a-~-k~ -- ~ f 

f3kD[1 + aa + �89 2] a2 ~ 2(j + 1)(aj) 2' 
X 

1 + aa ~=o ( 2 j +  3)! 

+ ~ (aa)~a ~ ~ 6(j + l=_)(aa):'\ 
: o  ( 2 / +  5)! ) 1  (B10) 

A P P E N D I X  C 

Referring to Eq. (65), we find that 

s+"xt(k, oO = [(1 - H~)-l~b]~(k, ~o) 

= ~ [(1 - H~)-~]~(k, w)a~-a(k - k~,, oJ) 

= ~ [(1 - ~oH)-l]~(k, ~)k~~ (CI) 
h 

where we first used the properties of periodic operators, then Eq. (68), and 
finally recognized that H~ = abH. 

Due to its periodic character, the operator (1 - a~H)-~(k, w) can be 
written as 

(1 - aoH)-l(k, o~lk') = (2.) ~ ~ f h ( k ,  r - k' - k~) (C2) 

where 

f~(k, ~o) = [(1 - a0H)-~]a(k, co) (ca) 

From the definition of the inverse of a periodic operator, we have 

If.(1 - abH)]a(k, w) = 8h o, = (~  ifotherwiseka = 0 (C4) 

Using Eq. (68) and noting that the cutoff operator H is diagonal in k, we see 
that 

~.o = ~ f U ( k ,  ~)(1 - aoH)a-~(k - k , ,  ~) 

= fX(k, w) k(O)~r ~;'r oJ)H(k k~, to) (C5) - -  [ ~ v s / _ + d  k .~ ,  
.u 

Summing Eq. (C5) over all A, one obtains 

~ f " 0 ~ .  ~o) ; ~ - ~7,N~ ~ ~0~ - k. ,  ~o) (C6) 



54 Julian R. Lebenhaft and Raymond Kapral 

Clearly, Eq. (C5) can now be rearranged to yield 

f~(k, co) = 8z.o + k}~ - k(z~ ~ H(k - k=, ~o)]-~H(k - k~, ~) (C7) 
t~ 

using which allows us to express Eq. (C1) as follows: 

sgxt(k, o~) = k~~ - k~~ co)] -1 (C8) 

APPENDIX D 

We give below some details concerning the calculation of the first sink 
density correction to the rate coefficient, which was outlined in Section 5. 

D1. Mul t ip le  Scattering Contr ibutions 

Equations (105), (107), and (108) were derived by using the explicit form 
of the operator ~ [cf. Eq. (100)] in Eqs. (104). This was further simplified 
by noticing that terms involving ab~(R)Hab~(R) vanish identically; this follows 
directly from the presence of the Dirac delta functions 8(r - R08(r' - R1) 
in abl(r, ~lr') [cf. Eq. (98)]. 

In analyzing the various operators A~ of Eq. (103), one may use the 
following formulas for the ~ (we write explicit results for N = 1, 2, 3): 

t = 0  

= %(R0 (DI) 

~(R~, R2) = [I - =b~(ROH]~b~(R2) ~ (-I)~[HgbI(R~)HgbI(R2)] ~ 
~=0 

+ [1 -- tTbZ(R2)H]abZ(Rz) ~ (-1)~[H~b~(R2)H~b~(R0] ~ 
~ = 0  

(DE) 
and 

~a(R1, Rs, l a )  = [1 - a01(R2)H- crb~(Ra)H]abl(R1) ~ ( - 1 )  ~ 
t = 0  

x {[Ha#(R2)H~bl(R0] ' + [H~#(R2)H%l(Ra)] ' 

+ + 

+ all possible permutations (D3) 

In order to identify the ring terms, these general relations, which clearly 
introduce numerous classes of closed diagrams, need not be used in full. 
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Instead, one may merely retain terms to the desired order in H. Pursuing this 
strategy, one finally obtains the desired results. 

D2. Ring Diagrams 

To illustrate the procedure used in computing such diagrams (cf. Fig. 2), 
we shall consider in detail the simplest case, viz. %l(R1)H~l(R~)H%l(R1). 
Using Eqs. (D1) and (D2), we note that 

! 

= f dR~ dR2 a~(R~)H%l(R2)H%~(R1) 

f dR1 dR2 [e -a%(R12) - 1]%~(R~)Hab~(R2)H%~(R~) (D4) + 

Provided the interaction potential between the sinks has a short range, 
the second integral in Eq. (D4) is well behaved, and the singularity resides in 
the first term. This is what was referred to as A2 R in Eq. (107). In analyzing 
the singular ring contributions, we may then neglect the direct interaction 
between the sinks. 

We may write the first term in Eq. (D4) explicitly in (k, co) space for 
oJ = 0as 

A2R(k, 0lk') = &~(k, 0)(2~r)38(k - k') 

= (2zr)-6 f dR1 dR2 f dkl dk2 %l(klkl; R1) 

x H(k~)%~(kz Ik2; R2)H(kz)%l(kzlk'; Rz) 

k~, 3 
f dRx dR~ f dkl dk2 H(kl)H(k2) 

x exp[i(k~ - k).R~] exp[i(k2 - k0.R:]  

• exp[i(k' - k~).R~] (DS) 

Combining exponential terms and performing the substitution R~2 = 
R~ - R2 and a subsequent integration over R2 yields for A~n(k, 0) 

A:~(k, 0) = A:'(0, O) = kD8 f dR~ f dk~ dk: H(kx)H(kz) (2~) ~ 

x exp[i(k~ - k~).R~=] (D6) 

Finally, integrating over R~2, we find that Eq. (D6) simplifies to 

(kD)af [k~a~ dk A2S = 27 dk [H(k)] ~ = (D7) \2s .] Do2k ~ 
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which is identical to Eq. (107). The higher order calculations follow in a 

parallel fashion. 

R E F E R E N C E S  

1. M. v. Smoluchowski, Phys. Z. 17:557 (1916). 
2. R. M. Noyes, Prog. Reac. Kin. 1:128 (1961) and references therein. 
3. B. U. Felderhof and J. M. Deutch, J. Chem. Phys. 64:4551 (1976). 
4. P. Mazur and D. Bedeaux, Physiea 76:235 (1974). 
5. L. M. Hafkensheid and J. Vlieger, Physica 75:57 (1974); 79A:517 (1975). 
6. R. Kapral and D. Bedeaux, Physica 91A: 590 (1978). 
7. D. Bedeaux, R. Kapral, and P. Mazur, Physica 88A:88 (1977). 
8. F. C. Collins and G. E. Kimball, J. Colloid Sci. 4:425 (1949). 
9. A. Albano, D. Bedeaux, and P. Mazur, Physica 80A:89 (1975). 

10. B. R. A. Nijboer and F. W. de Wette, Physica 23:309 (1957). 
11. H. L. Friedman, Ionic Solution Theory (Interscience, New York, 1962). 
12. K. F. Freed and M. Muthukumar, J. Chem. Phys. 69:2657 (1978); and C. Y. Mou 

and S. A. Adelman, J. Chem. Phys. 69:3135 (1978). 
13. P. A. Hiltner, Y. S. Papir, and I. M. Krieger, J. Phys. Chem. 75:1881 (1971). 
14. B. U. Felderhof, J. Chem. Phys. 66:4385 (1977), esp. Section VII. 


